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Simple variational approach to the quantum Frenkel-Kontorova model
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We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova
model. Dirac’s time-dependent variational principle is adopted together with a Hartree-type many-body trial
wave function for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain
an effective classical Hamiltonian for the system, which is simple enough for a complete numerical solution for
the static ground state of the model. Numerical results show that our simple approach captures the essence of
the quantum effects first observed in quantum Monte Carlo studies.
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[. INTRODUCTION tion, which they used. It was then argued that to get the
sawtooth map one must go beyond the MFA by including the
The Frenkel-Kontorov&FK) model[1,2] is a simple one- contributions from the so-called quasidegenerate states.
dimensional model used to study incommensurate structuréehese states are inhomogeneous configurations correspond-
appearing in many condensed-matter systems, such &g to excited states in the MFA that are nearly degenerate in
charge-density waves, magnetic spirals, and adsorbed monenergy with the naive MFA ground state. They contribute
layers[3]. These modulated structures arise as a result of theubstantially to the actual quantum ground state through
competition between two or more length scales. The FKquantum tunneling. The sawtooth map emerged after the
model describes a chain of atoms connected by harmonigixing of these quasidegenerate states were taken into ac-
springs subjected to an external sinusoidal potential. In agount in Ref[7].
important development in the study of the elassical FK  More recently, a different approach was proposed in Ref.
model, Aubry[4] first made use of the connection between[g] that uses a generalized squeezed state many-body wave
the FK model, the so-called “standard map,” and thefnction to demonstrate that the sawtooth behavior is simply
Kolmog_orov—ArnoId-Mosel(KAM) theorem to reveal many o yoqit of guantum fluctuations. Similar to RET], this
Lﬂﬁ“\j\fgg‘g Iﬁgtumr:;notjtiztearﬁgalrggiglllgda;trlmceu\l/sirr%’i:ge ﬁlhj:)nvyecé)aper also adopted an approximation that goes beyond the
ben between two successive atoms is rational, the system iMFA' In our opinion, the approach (.)f Refig] is very ap-
always pinned. But when the winding number, is irrational Seall_ng n principle. However, we believe that_ some difficul-
there exits a critical external field strength beldgabove ’U?S in this paper neeel be overcome before it could be con-
which the system is unpinneghinned. This transition is sidered satlsfactory..Flrst, the assumed squeezed.state many-
body ground state is general enough so as to include the

called by Aubry a “transition by breaking of analyticity,” . =
and is closely connected with the breakup of a KAM torus. Itcorrelatlons of the positions cithe _ato_ms, expressed by the
(Xi—x)(X;—x%;)) (i#]), wherex; is the

is very analogous to a phase transition, and various criticgfovariancess; =( _ . .
exponents and questions of universality have been extefRosition of theith atom,(. - -) is the expectation value in a
sively studied in the past. given quantum state, ang=(x;). However, to find the
In recent years, the FK model has been applied to thequilibrium state of the model, one has to solve a system of
study of transmission in Josephson junction and atomic-scaleoupled equations of the variabbgsand theG;; obtained in
friction-nanoscale tribology5]. In these cases, quantum ef- Ref.[8] by varyingx; andG;; independently. The equations
fects are very important. Unlike the classical case, the studgbtained are so complicated that the task of solving them
of quantum FK models is rather scanty. It was first consid-within a single numerical framework is very difficult. In fact,
ered in a quantum Monte Car[@MC) analysis in Ref[6]. in Ref.[8] a hybrid numerical analysis was adopted in which
Their main observation is that the map appropriate to dethe equations for th&;; were not solved. Instead, the values
scribe the quantum case is no longer the standard map, bat G;; were taken from QMC data. These values were then
rather a map with a sawtooth shape. Theoretical explanatiotieated as initial conditions in solving the equations for the
of this phenomenon was later attempted in R&f. In this  atomic positionsx;’s. Technically, such hybrid analysis is
paper the authors first showed that the sawtooth map couldot satisfactory. Second, the covariance te@ys(i # ) are
not be explained in the naive mean-field approximationconstrained by the values of the fluctuation te@sandG;;
(MFA), i.e., the Hartree’s independent-particle approxima-through the Cauchy-Schwarz inequality. These constraints
guarantee the boundedness from below of the effective
Hamiltonian[9]. But this also calls for a proper variational
*Mailing address: Department of Physics, Tamkang University,principle that has to take care of the interdependence of the
Tamsui 25137, Taiwan. G;; terms.
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In this paper we shall show that all the essential features 1
observed in the QMC studies can in fact be obtained froman  (Q;|#; ,t)= —=
independent-particle picture of the many-body ground state, (27hG;)
i.e., in the MFA. In the independent-particle picture the
many-body trial wave function is factorizable into single- _i w2 E -1_ 57,
! ] - X ex = (Qi—X%)) 5G; 2i1I;
particle states. One can assume the single-particle state to 2h 2

have the form of a squeeze state. For the quantum FK model,
a simpler and, in our view, more elegant approach is to adopt i
Dirac’'s time-dependent variational princip[dQ] together +%pi(Qi_Xi)
with the Jackiw-KermanJK) function [11] as the single-
particle state. This is the main difference between our ap- . )
proach and the naive MFA in Ref7], where the single- n€ real quantitiesi(t), pi(t), Gi(t), andIIi(t) are varia-
particle wave functions were determined by solving a set ofional parameters the variations of whichtat £« are as-
self-consistency conditions. We shall show that our simplesumed to vanish. The JK wave function can be viewed as the
independent-particle approach produces an effective classic® ePresentation of the squeeze stdte]. We prefer to use
Hamiltonian that is bounded from below, admits simple nu-the JK form since the physical meaning of the variational
merical solution of the ground state without recourse toParameters contained in the JK wave function is most trans-
QMC analysis, and reproduces the essential features olparent, as we shall sh_ow below. Furthe_rmore, t_he JK form is
served in QMC studies. in the general Gaussian form so that integrations are most
easily performed.
It is not hard to check that; and p; are the expectation

Il. EFFECTIVE HAMILTONIAN values of the operator€); and P;: x,=(¥|Q;|¥), p

— D ~ 2 _7
The Hamiltonian of the quantum FK model is given by _<‘P~|Pi|‘y>- Also, one has(W[(Q; —x)*|¥)=%G;, and
(V|iha|P)y=2;(pix; —hG;ill;), where the dot represents a
derivative with respect to time It is now clear that:G; is
p? oy . R R the mean fluctuation of the position of thié atom, and that
—+§(qi+1—qi)2—Vcos(qui) . (1) Qi>0. With these expectatipn values, ttrescaled effec-
tive actionI” for the dimensionles$i can be worked out
to be T(x,p,G,I)=[di[Z 0y (piXi+ LG} —Hesl,
Here q; and p; are the position and momentum operators,Wherewo= yy/m s the angular frequency of the spring, and
respectively, of theth atom, y the elastic constant of the Herr=(W[H|¥) is the effective Hamiltonian given by
spring, andV and 2/l are the strength and the period of
the external potential. As in R€f7], it is convenient to use

. (3

H=2,

i 2m

. . A A a - 1 ~1 1
the d|r2nenS|o_nIess vanabIeQi:_lo(Ji, Pizlopi/_\/my, and Heffzz 5 pi2+h ZGi‘1+41'[i26i +Z E(xiﬂ—xi)2
K=VIg/y. With these new variables, we obtain the follow- : :

ing dimensionless HamiltoniaH

N

[
(Gi+1+Gi)—§i: K ex _EGi COSX; .

+2

PZ 1, . . 4
H=2 |5 +5(Qina-Q)*-KeodQ) . (2 @
The last term in Eq(4) can be very easily obtained from
_ (Y[FQ)|P)=21_FC™(x)(AG)™(2m)!!,  where
We have H= yH/I%. The effective Planck constant & FV(x)=d"F(x)/ox", and nll=n(n—2)(n—4)...1.
=#l12/\my. For the classical FK model, the Aubry transi- Equation(4) is bounded from below. One sees from the form
tion occurs at the critical valug.=0.9716% . .. . of the effective actiod” thatlIl; is the canonical conjugate of

To study the ground-state properties of the quantum FKG; .

model in Eqg.(2), we adopt here the time-dependent varia- VaryingI" with respect tok, p, G, andIl then gives the
tional principle pioneered by DiraflQ]. In this approach, equations of motion in the Hartree-Fock approximation.
one first constructs the effective actidh= [dt(W,t|i%d, Since we are mainly concerned with the static properties of
—H|W¥,t) for a given system described Wy and |V ,t). the ground state of the quantum FK model, we must set the
Variation of I' is then the quantum analogue of the Hamil- time derivatives of these variables to zero. This gives the
ton’s principle. The time-dependent Hartree-Fock approxi-equations that determine the values of variational parameters
mation emerges when a specific ansatz is made for the staterresponding to the equilibrium statéshich include the
|¥,t). We now assume the trial wave function of the groundground state Equivalently, we can obtain the equations for
state of our quantum FK system to have the Hartree fornthe equilibrium states by directly varying the effective
|W,t)=1I;| ¢; ,t), where the normalized single-particle state HamiltonianH; with respect to the variables. Varyity ¢
|4 ,t) is taken to be the JK wave functigal1]: with respect top;, I1;, X;, andG; give, respectively,
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pi=0, A4II;G;=0, 5 6 10
0.5
7 4
Xj 11— 2%+ X _1=K ex _EGi sinx;, (6) , 0.0
0.5
1 ., [/ R 0 -1.0
ZG‘ —Kex _EGi cosx;—2=4II. (7) 05 05
The second equation in E@5) implies II;=0 as G;>0. 0.4 0.4
This in turn means that the right-hand side of Ef).is equal
to zero: 0.3 0.3
- 0.2 0.2
1., h —
2Gi “—Kexp — 5 G fcodx)—2=0. €) 0123456 0123456

2r i P/1Q (mod 2r) X; (mod 2r)
In the limit #=0, Eq.(6) is equivalent to the standard map.
We note that Eq(6) was also obtained in Ref8]. This is . FI.G. 1. Structure of the quantEm ground state kor5 a_nd
because in the formulation in RéB] the covariances;;’s ~ Winding numberP/Q=610/987 at4 =2 (black dot3, 6 (white
decoupled from the; and the fluctuationss;; (G; in our dotg, and 7(black .curve)..(.a) guantum hgll function pIott.ed against
cas in the variation of their Hamiltonian with respectxp. ~ UnPerturbed atomic positiongb) g function plotted against actual
Unlike our case, of course, these covariance terms do actgiomic positiondthe dashed curves represent Eoy) with G, sat-
ally influence the solutions of Eq6) through other equa- 'S¥iNd EQ.(8); (¢) and(d) quantum fluctuations; plotted against
tions obtained by variation of the Hamiltonian with respectthe aCt_ual and unperturbed positions, reSp_eCt'Vely; The dashed
to theG;; andG;; . And it is these equations that caused the®!Ve® in(c) represent the curves of E() for different?.
difficulties mentioned in the Introduction. In particular, the
values of theG;; were input from the QMC data in order to
solve for thex; in Eq. (6). Our simple approach, on the other
hand, allows us to solve for both the valuesxpfand G;
coupled by Eqgs(6) and(8) consistently by a single numeri-
cal method.

Fromp;=1I1,=0 and Eq.(4), we see that the problem o
finding the static ground state of the quantum FK modeIE
reduces to the problem of minimizing with respecixtcand
G; the following effective potential:

all values ofx; andG; are determined by the same numerical
method consistently. In particular, we do not have to input
the values ofG; from quantum Monte Carlo results in order
to solve for; .

Having obtained the values of which give the mean
f positions of the quantum atoms in the chain, we can compare
he results with the classical configuration, following Ref.
6], in two ways:(1) by the quantum hull function, which is
the plot ofx; (mod 27) of the atoms against their unper-
turbed positions ZiP/Q (mod 27) and (2) by the so-
z calledg function, defined by

1 2 -1

Verr E‘ 2 (1) +Ei 8% Oi=K (X 11— 2X+X 1), (10

7 % i itiok:
+z _(Gi+1+Gi)_2 Kexg — ~G.|cosx.. (9) versus the actual atomic positiors From Eq.(6), we also
T2 i 2 have
Equations(6) and (8) are just the conditiongV¢¢/dx;=0 %
anddVes1/9G; =0, respectively. gi=exp( - EGi)SinXi (11)

IIl. NUMERICAL RESULTS . . .
HereG,; is related tax; by Eq.(8). We see from this equation

We numerically solve for the set of variablgsand G, that quantum fluctuation&; will modify the shape of the
which characterize the ground state using the Newtortlassicalsinemap. In addition to these two types of graphs,
method[13]. In all our numerical computations the winding we also plot the graph dB; against the unperturbed and the
number P/Q=610/987, which is an approximation of the actual positions. The formal graph was first introduced in
golden mean winding number/6—1)/2, is used with the Ref.[6] to show the strong correlation of the fluctuations of
periodic boundary conditiorx;,q=x;+27P [14]. This atoms’ positions with their unperturbed positions. We intro-
winding number is much more accurate than those used iduce the latter type of graphs here since we think that such
previous works to approximate the golden mean numbemgraphs provide a better picture about how the quantum fluc-
thus giving us better accuracy in the computations of physituations of the atoms are related to their actual positions.
cal quantities related to the ground state. We emphasize that In Fig. 1 we show the four graphs mentioned above with
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different values ofi for the supercritical cask=5. Figure 6 ([ 19
1(a) shows the quantum hull functions. For small value& of | o5
the quantum hull function consists of a countable set of steps 4
discontinuities, just as in the classical case: the atoms are in 0.0
a pinning phase. In fact, the atoms are more likely to be 2
located near the valley of the external potential well, namely, 05
nearx;=0 (mod 2m). As the quantum effect increases, i.e., 0 1.0
for increasing values of, the quantum hull function gradu- 0.6 0.6
ally changes into a monotonic analytic function, signifying
that the system is entering the depinning phase. There exists 0.5 0.5
a critical value, approximatelyi,=6.58 for K=5, above
which the quantum hull function changes from an nonana- %4 0.4
lytic function to an analytic one. This is a quantum analogue 0.3 0.3
of the Aubry transition in the classical case, and can there- ) = ™
fore be called the quantum Aubry transition. 0123456 0123456

Next in Fig. 1b) we show the graphs of thg function. 2 1 PIQ (mod 2r) X,(mod 2)
The curve defined by Eq11) with G; satisfying Eq.(8) are !
shown here as dashed curves for differentn the classical FIG. 2. Same as Fig. 1 fdf = 1.5 andf = 0.5 (black dot3, 1.0

limit (7=0) this curve is simply the standard magine  (white dots, and 2 (black curve.

curve. As7 increases, the amplitude of the curve decrease?behavior of the graphs are the same as those in Fig. 1. As

For sufficiently large?, the curve resembles more closely a expected, quantum Aubry transition takes place at a smaller

“sawtooth” shape. This is first noted in QMC study in Ref. 7 _ 4 1+ We note here that the shape of thunction at
[6]. Here we see that it comes out very naturally from the, ¢~ '

equation of motion$8) and(11). We have therefore demon-
strated that the sawtooth map could be recovered in th
MFA. In the supercritical caseK(=5), when% <%, the
positionsx; of the atoms cover only a subset of theurves.

large % in this case is intermediate betweensiae and a
gawtooth map.
We have also checked the subcritical cases WithK .
The classical system is already in the depinning phase in this
D . ) regime. Quantum fluctuations only enhance the trend of de-
This is in accord with the fact that the atoms are in thepinning Theg function is found to be closer tosineshape
pinning phasgcf. Fig. 1(@)]. As# Increases, the points begin smaller amplitude for highef. This is consistent with
to spread along thg curve. When#i>%, the g graph is  the QMC result§6].
completely covered as the system has entered the depinning Finally, we note here that, while we have reproduced the
phase. essential features first observed in the QMC studies of the
Figure Xc) shows the quantum fluctuatior; plotted  quantum FK model, there is also slight discrepancy between
against the actual atomic positions. The dashed curves the results of these two approaches. The difference is that,
represent the curves of E() for different%. For small%, for a fixed value oK, the QMC result$6] indicated that the
the atoms are located negre=0 (mod 27) with small val-  sawtooth shape of thggfunction appeared at a lower value of
ues ofG;, which means, from Eq3), that the wave func- 7, and that the atoms began to spread alonggtberve also

tions are highly peaked at these pos.itions. As the.quanturat a smaller,. For example, atK=5 the QMC results
effect increases, the external potential is so modified thath d that the ab ituati read G at
now the atoms could be found at other positions, but withs_ owed that the above siuation aiready appear(i a
atoms atx, = (mod 27) having the largest value d® . =0.2, whl_le our resultgcf. Fig. ].(b)] I|nd|cate that aK—5_

This indicates that wave functions of the atoms near the tognd at & highet =2, the system is still closer to the classical

of the potential are more extended with smaller amplitudesé@se. We believe this could be explained as follows. First,
Again, when% >7 ., the curves of Eq(8) are completely our mdependent-_partlcle wave function is only th_e lowest-
covered by the solutions;. To compare with the results in order approximation of the many-body wave fgnctlon of the
Ref. [6], we plot the values o, against the unperturbed guantum FK system. A more accurate description of the sys-

positions in Fig. 1d). One sees that the values & are tem will require a better assumption of the wave function

strongly correlated with the unperturbed positions, as firs%han that assumed here. This presumably may require the
gly P P ’ inclusion of the effects of the covariance terms as advocated

noted in Ref.[6]. For ﬁ~<ﬁ~c the graphs consists of steps i, Ref. [8], but with a more appropriate variational principle
discontinuities, and foh>#. the graphs are continuous. to circumvent the difficulties already mentioned in the Intro-
This is correlated with the graphs of the quantum hull func-duction. Second, our results are obtained at zero temperature,
tion in Fig. 1(a), since from Eq.(8) any fixed value ofx; while those in the QMC analysis were obtained, by the na-
corresponds to a fixed value & . ture of the method itself, at small but finite temperatures

Next we show in Fig. 2 the corresponding graphs for the(temperaturelT =0.0067 as given in Ref.6]). It is natural
caseK=1.5. This represents the situation that is slightlythat thermal fluctuations will cause the atoms to spread away
over the critical classical case. The general trends of thérom their zero-temperature positions.
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