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Simple variational approach to the quantum Frenkel-Kontorova model
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We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova
model. Dirac’s time-dependent variational principle is adopted together with a Hartree-type many-body trial
wave function for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain
an effective classical Hamiltonian for the system, which is simple enough for a complete numerical solution for
the static ground state of the model. Numerical results show that our simple approach captures the essence of
the quantum effects first observed in quantum Monte Carlo studies.
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I. INTRODUCTION

The Frenkel-Kontorova~FK! model@1,2# is a simple one-
dimensional model used to study incommensurate struct
appearing in many condensed-matter systems, such
charge-density waves, magnetic spirals, and adsorbed m
layers@3#. These modulated structures arise as a result of
competition between two or more length scales. The
model describes a chain of atoms connected by harm
springs subjected to an external sinusoidal potential. In
important development in the study of the classical
model, Aubry@4# first made use of the connection betwe
the FK model, the so-called ‘‘standard map,’’ and t
Kolmogorov-Arnold-Moser~KAM ! theorem to reveal many
interesting features of the FK model. Particularly, he show
that when the mean distance~also called the winding num
ber! between two successive atoms is rational, the syste
always pinned. But when the winding number is irration
there exits a critical external field strength below~above!
which the system is unpinned~pinned!. This transition is
called by Aubry a ‘‘transition by breaking of analyticity,’
and is closely connected with the breakup of a KAM torus
is very analogous to a phase transition, and various crit
exponents and questions of universality have been ex
sively studied in the past.

In recent years, the FK model has been applied to
study of transmission in Josephson junction and atomic-s
friction-nanoscale tribology@5#. In these cases, quantum e
fects are very important. Unlike the classical case, the st
of quantum FK models is rather scanty. It was first cons
ered in a quantum Monte Carlo~QMC! analysis in Ref.@6#.
Their main observation is that the map appropriate to
scribe the quantum case is no longer the standard map
rather a map with a sawtooth shape. Theoretical explana
of this phenomenon was later attempted in Ref.@7#. In this
paper the authors first showed that the sawtooth map c
not be explained in the naive mean-field approximat
~MFA!, i.e., the Hartree’s independent-particle approxim
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tion, which they used. It was then argued that to get
sawtooth map one must go beyond the MFA by including
contributions from the so-called quasidegenerate sta
These states are inhomogeneous configurations corresp
ing to excited states in the MFA that are nearly degenerat
energy with the naive MFA ground state. They contribu
substantially to the actual quantum ground state thro
quantum tunneling. The sawtooth map emerged after
mixing of these quasidegenerate states were taken into
count in Ref.@7#.

More recently, a different approach was proposed in R
@8# that uses a generalized squeezed state many-body w
function to demonstrate that the sawtooth behavior is sim
the result of quantum fluctuations. Similar to Ref.@7#, this
paper also adopted an approximation that goes beyond
MFA. In our opinion, the approach of Ref.@8# is very ap-
pealing in principle. However, we believe that some difficu
ties in this paper need be overcome before it could be c
sidered satisfactory. First, the assumed squeezed state m
body ground state is general enough so as to include
correlations of the positions of the atoms, expressed by
covariancesGi j 5^(xi2 x̄i)(xj2 x̄ j )& ( iÞ j ), wherexi is the
position of thei th atom,^•••& is the expectation value in a
given quantum state, andx̄i5^xi&. However, to find the
equilibrium state of the model, one has to solve a system
coupled equations of the variablesxi and theGi j obtained in
Ref. @8# by varyingxi andGi j independently. The equation
obtained are so complicated that the task of solving th
within a single numerical framework is very difficult. In fac
in Ref. @8# a hybrid numerical analysis was adopted in whi
the equations for theGi j were not solved. Instead, the value
of Gi j were taken from QMC data. These values were th
treated as initial conditions in solving the equations for t
atomic positionsxi ’s. Technically, such hybrid analysis i
not satisfactory. Second, the covariance termsGi j ( iÞ j ) are
constrained by the values of the fluctuation termsGii andGj j
through the Cauchy-Schwarz inequality. These constra
guarantee the boundedness from below of the effec
Hamiltonian@9#. But this also calls for a proper variationa
principle that has to take care of the interdependence of
Gi j terms.
,
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In this paper we shall show that all the essential featu
observed in the QMC studies can in fact be obtained from
independent-particle picture of the many-body ground st
i.e., in the MFA. In the independent-particle picture t
many-body trial wave function is factorizable into singl
particle states. One can assume the single-particle sta
have the form of a squeeze state. For the quantum FK mo
a simpler and, in our view, more elegant approach is to ad
Dirac’s time-dependent variational principle@10# together
with the Jackiw-Kerman~JK! function @11# as the single-
particle state. This is the main difference between our
proach and the naive MFA in Ref.@7#, where the single-
particle wave functions were determined by solving a se
self-consistency conditions. We shall show that our sim
independent-particle approach produces an effective clas
Hamiltonian that is bounded from below, admits simple n
merical solution of the ground state without recourse
QMC analysis, and reproduces the essential features
served in QMC studies.

II. EFFECTIVE HAMILTONIAN

The Hamiltonian of the quantum FK model is given by

H5(
i

F p̂i
2

2m
1

g

2
~ q̂i 112q̂i !

22V cos~ l 0q̂i !G . ~1!

Here q̂i and p̂i are the position and momentum operato
respectively, of thei th atom,g the elastic constant of th
spring, andV and 2p/ l 0 are the strength and the period
the external potential. As in Ref.@7#, it is convenient to use
the dimensionless variablesQ̂i5 l 0q̂i , P̂i5 l 0p̂i /Amg, and
K5Vl0

2/g. With these new variables, we obtain the follow
ing dimensionless HamiltonianH

H5(
i

F P̂i
2

2
1

1

2
~Q̂i 112Q̂i !

22K cos~Q̂i !G . ~2!

We haveH5gH/ l 0
2. The effective Planck constant is\̃

5\ l 0
2/Amg. For the classical FK model, the Aubry trans

tion occurs at the critical valueKc50.971635 . . . .
To study the ground-state properties of the quantum

model in Eq.~2!, we adopt here the time-dependent var
tional principle pioneered by Dirac@10#. In this approach,
one first constructs the effective actionG5*dt^C,tu i\] t
2HuC,t& for a given system described byH and uC,t&.
Variation of G is then the quantum analogue of the Ham
ton’s principle. The time-dependent Hartree-Fock appro
mation emerges when a specific ansatz is made for the
uC,t&. We now assume the trial wave function of the grou
state of our quantum FK system to have the Hartree fo
uC,t&5) i uc i ,t&, where the normalized single-particle sta
uc i ,t& is taken to be the JK wave function@11#:
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^Qi uc i ,t&5
1

~2p\̃Gi !
1/4

3expH 2
1

2\̃
~Qi2xi !

2F1

2
Gi

2122iP i G
1

i

\̃
pi~Qi2xi !J . ~3!

The real quantitiesxi(t), pi(t), Gi(t), andP i(t) are varia-
tional parameters the variations of which att56` are as-
sumed to vanish. The JK wave function can be viewed as
Q representation of the squeeze state@12#. We prefer to use
the JK form since the physical meaning of the variation
parameters contained in the JK wave function is most tra
parent, as we shall show below. Furthermore, the JK form
in the general Gaussian form so that integrations are m
easily performed.

It is not hard to check thatxi and pi are the expectation
values of the operatorsQ̂i and P̂i : xi5^CuQ̂i uC&, pi

5^CuP̂i uC&. Also, one haŝ Cu(Q̂i2xi)
2uC&5\̃Gi , and

^Cu i \̃] tuC&5( i(pi ẋi2\̃GiṖ i), where the dot represents
derivative with respect to timet. It is now clear that\̃Gi is
the mean fluctuation of the position of thei th atom, and that
Gi.0. With these expectation values, the~rescaled! effec-
tive action G for the dimensionlessH can be worked out
to be G(x,p,G,P)5*dt@( iv0

21(pi ẋi1\̃P i Ġi)2He f f#,
wherev05Ag/m is the angular frequency of the spring, an
He f f5^CuHuC& is the effective Hamiltonian given by

He f f5(
i

1

2 Fpi
21\̃S 1

4
Gi

2114P i
2Gi D G1(

i

1

2
~xi 112xi !

2

1(
i

\̃

2
~Gi 111Gi !2(

i
K expS 2

\̃

2
Gi D cosxi .

~4!

The last term in Eq.~4! can be very easily obtained from

^CuF(Qi)uC&5(m50
` F (2m)(xi)(\̃Gi)

m/(2m)!!, where
F (n)(x)5]nF(x)/]xn, and n!! [n(n22)(n24) . . . 1.
Equation~4! is bounded from below. One sees from the for
of the effective actionG thatP i is the canonical conjugate o
Gi .

Varying G with respect tox, p, G, andP then gives the
equations of motion in the Hartree-Fock approximatio
Since we are mainly concerned with the static properties
the ground state of the quantum FK model, we must set
time derivatives of these variables to zero. This gives
equations that determine the values of variational parame
corresponding to the equilibrium states~which include the
ground state!. Equivalently, we can obtain the equations f
the equilibrium states by directly varying the effectiv
HamiltonianHe f f with respect to the variables. VaryingHe f f
with respect topi , P i , xi , andGi give, respectively,
3-2
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pi50, 4P iGi50, ~5!

xi 1122xi1xi 215K expS 2
\̃

2
Gi D sinxi , ~6!

1

4
Gi

222K expS 2
\̃

2
Gi D cosxi2254P i

2 . ~7!

The second equation in Eq.~5! implies P i50 as Gi.0.
This in turn means that the right-hand side of Eq.~7! is equal
to zero:

1

4
Gi

222K expS 2
\̃

2
Gi D cos~xi !2250. ~8!

In the limit \50, Eq.~6! is equivalent to the standard ma
We note that Eq.~6! was also obtained in Ref.@8#. This is
because in the formulation in Ref.@8# the covariancesGi j ’s
decoupled from thexi and the fluctuationsGii (Gi in our
case! in the variation of their Hamiltonian with respect toxi .
Unlike our case, of course, these covariance terms do a
ally influence the solutions of Eq.~6! through other equa
tions obtained by variation of the Hamiltonian with respe
to theGii andGi j . And it is these equations that caused t
difficulties mentioned in the Introduction. In particular, th
values of theGii were input from the QMC data in order t
solve for thexi in Eq. ~6!. Our simple approach, on the oth
hand, allows us to solve for both the values ofxi and Gi
coupled by Eqs.~6! and~8! consistently by a single numer
cal method.

From pi5P i50 and Eq.~4!, we see that the problem o
finding the static ground state of the quantum FK mo
reduces to the problem of minimizing with respect toxi and
Gi the following effective potential:

Ve f f5(
i

1

2
~xi 112xi !

21(
i

\̃

8
Gi

21

1(
i

\̃

2
~Gi 111Gi !2(

i
K expS 2

\̃

2
Gi D cosxi . ~9!

Equations~6! and ~8! are just the conditions]Ve f f /]xi50
and]Ve f f /]Gi50, respectively.

III. NUMERICAL RESULTS

We numerically solve for the set of variablesxi andGi ,
which characterize the ground state using the New
method@13#. In all our numerical computations the windin
number P/Q5610/987, which is an approximation of th
golden mean winding number (A521)/2, is used with the
periodic boundary conditionxi 1Q5xi12pP @14#. This
winding number is much more accurate than those use
previous works to approximate the golden mean numb
thus giving us better accuracy in the computations of ph
cal quantities related to the ground state. We emphasize
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all values ofxi andGi are determined by the same numeric
method consistently. In particular, we do not have to inp
the values ofGi from quantum Monte Carlo results in orde
to solve forxi .

Having obtained the values ofxi which give the mean
positions of the quantum atoms in the chain, we can comp
the results with the classical configuration, following Re
@6#, in two ways:~1! by the quantum hull function, which is
the plot of xi (mod 2p) of the atoms against their unpe
turbed positions 2p iP/Q (mod 2p) and ~2! by the so-
calledg function, defined by

gi[K21~xi 1122xi1xi 21!, ~10!

versus the actual atomic positionsxi . From Eq.~6!, we also
have

gi5expS 2
\̃

2
Gi D sinxi . ~11!

HereGi is related toxi by Eq.~8!. We see from this equation
that quantum fluctuationsGi will modify the shape of the
classicalsinemap. In addition to these two types of graph
we also plot the graph ofGi against the unperturbed and th
actual positions. The formal graph was first introduced
Ref. @6# to show the strong correlation of the fluctuations
atoms’ positions with their unperturbed positions. We intr
duce the latter type of graphs here since we think that s
graphs provide a better picture about how the quantum fl
tuations of the atoms are related to their actual positions

In Fig. 1 we show the four graphs mentioned above w

FIG. 1. Structure of the quantum ground state forK55 and

winding numberP/Q5610/987 at\̃52 ~black dots!, 6 ~white
dots!, and 7~black curve!. ~a! quantum hull function plotted agains
unperturbed atomic positions;~b! g function plotted against actua
atomic positions~the dashed curves represent Eq.~11! with Gi sat-
isfying Eq. ~8!; ~c! and~d! quantum fluctuationsGi plotted against
the actual and unperturbed positions, respectively. The das

curves in~c! represent the curves of Eq.~8! for different \̃.
3-3
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different values of\̃ for the supercritical caseK55. Figure

1~a! shows the quantum hull functions. For small values o\̃
the quantum hull function consists of a countable set of st
discontinuities, just as in the classical case: the atoms ar
a pinning phase. In fact, the atoms are more likely to
located near the valley of the external potential well, name
nearxi50 (mod 2p). As the quantum effect increases, i.e
for increasing values of\̃, the quantum hull function gradu
ally changes into a monotonic analytic function, signifyin
that the system is entering the depinning phase. There e
a critical value, approximately\̃c56.58 for K55, above
which the quantum hull function changes from an nona
lytic function to an analytic one. This is a quantum analog
of the Aubry transition in the classical case, and can the
fore be called the quantum Aubry transition.

Next in Fig. 1~b! we show the graphs of theg function.
The curve defined by Eq.~11! with Gi satisfying Eq.~8! are
shown here as dashed curves for different\̃. In the classical
limit ( \̃50) this curve is simply the standard map~sine

curve!. As \̃ increases, the amplitude of the curve decrea
For sufficiently large\̃, the curve resembles more closely
‘‘sawtooth’’ shape. This is first noted in QMC study in Re
@6#. Here we see that it comes out very naturally from t
equation of motions~8! and~11!. We have therefore demon
strated that the sawtooth map could be recovered in
MFA. In the supercritical case (K55), when \̃,\̃c , the
positionsxi of the atoms cover only a subset of theg curves.
This is in accord with the fact that the atoms are in t
pinning phase@cf. Fig. 1~a!#. As \̃ increases, the points begi
to spread along theg curve. When\̃.\̃c , the g graph is
completely covered as the system has entered the depin
phase.

Figure 1~c! shows the quantum fluctuationsGi plotted
against the actual atomic positionsxi . The dashed curve
represent the curves of Eq.~8! for different \̃. For small\̃,
the atoms are located nearxi50 (mod 2p) with small val-
ues ofGi , which means, from Eq.~3!, that the wave func-
tions are highly peaked at these positions. As the quan
effect increases, the external potential is so modified
now the atoms could be found at other positions, but w
atoms atxi5p (mod 2p) having the largest value ofGi .
This indicates that wave functions of the atoms near the
of the potential are more extended with smaller amplitud
Again, when\̃.\̃c , the curves of Eq.~8! are completely
covered by the solutionsxi . To compare with the results in
Ref. @6#, we plot the values ofGi against the unperturbe
positions in Fig. 1~d!. One sees that the values ofGi are
strongly correlated with the unperturbed positions, as fi
noted in Ref.@6#. For \̃,\̃c the graphs consists of step
discontinuities, and for\̃.\̃c the graphs are continuous
This is correlated with the graphs of the quantum hull fun
tion in Fig. 1~a!, since from Eq.~8! any fixed value ofxi
corresponds to a fixed value ofGi .

Next we show in Fig. 2 the corresponding graphs for
caseK51.5. This represents the situation that is sligh
over the critical classical case. The general trends of
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behavior of the graphs are the same as those in Fig. 1
expected, quantum Aubry transition takes place at a sma
\̃c51.17. We note here that the shape of theg function at
large \̃ in this case is intermediate between asine and a
sawtooth map.

We have also checked the subcritical cases withK,Kc .
The classical system is already in the depinning phase in
regime. Quantum fluctuations only enhance the trend of
pinning. Theg function is found to be closer to asineshape
with smaller amplitude for higher\̃. This is consistent with
the QMC results@6#.

Finally, we note here that, while we have reproduced
essential features first observed in the QMC studies of
quantum FK model, there is also slight discrepancy betw
the results of these two approaches. The difference is t
for a fixed value ofK, the QMC results@6# indicated that the
sawtooth shape of theg function appeared at a lower value o
\̃, and that the atoms began to spread along theg curve also
at a smaller\̃. For example, atK55 the QMC results
showed that the above situation already appeared a\̃
50.2, while our results@cf. Fig. 1~b!# indicate that atK55
and at a higher\̃52, the system is still closer to the classic
case. We believe this could be explained as follows. Fi
our independent-particle wave function is only the lowe
order approximation of the many-body wave function of t
quantum FK system. A more accurate description of the s
tem will require a better assumption of the wave functi
than that assumed here. This presumably may require
inclusion of the effects of the covariance terms as advoca
in Ref. @8#, but with a more appropriate variational princip
to circumvent the difficulties already mentioned in the Intr
duction. Second, our results are obtained at zero tempera
while those in the QMC analysis were obtained, by the
ture of the method itself, at small but finite temperatur
~temperatureT50.0067 as given in Ref.@6#!. It is natural
that thermal fluctuations will cause the atoms to spread a
from their zero-temperature positions.

FIG. 2. Same as Fig. 1 forK51.5 and\̃50.5 ~black dots!, 1.0
~white dots!, and 2 ~black curve!.
3-4
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IV. SUMMARY

In conclusion, we have presented a simple and comp
variational approach to the quantum FK model based o
Hartree-type many-body trial wave function of the JK form
The effective Hamiltonian obtained is bounded from belo
and is simple enough for a complete numerical solution
the static ground state of the model in various quantum
gimes. Numerical results show that our simple approach c
tures the essence of the quantum effects first observe
QMC studies. The map appropriate for the quantum
model is well described by Eqs.~11! and ~8!. In contrast to
previous approaches, we do not require the existence o
complicated quasidegenerate states, or the partial help
QMC data in order to obtain these results.
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